Automated neuron tracing using probability hypothesis density filtering
نویسندگان
چکیده
Motivation The functionality of neurons and their role in neuronal networks is tightly connected to the cell morphology. A fundamental problem in many neurobiological studies aiming to unravel this connection is the digital reconstruction of neuronal cell morphology from microscopic image data. Many methods have been developed for this, but they are far from perfect, and better methods are needed. Results Here we present a new method for tracing neuron centerlines needed for full reconstruction. The method uses a fundamentally different approach than previous methods by considering neuron tracing as a Bayesian multi-object tracking problem. The problem is solved using probability hypothesis density filtering. Results of experiments on 2D and 3D fluorescence microscopy image datasets of real neurons indicate the proposed method performs comparably or even better than the state of the art. Availability and Implementation Software implementing the proposed neuron tracing method was written in the Java programming language as a plugin for the ImageJ platform. Source code is freely available for non-commercial use at https://bitbucket.org/miroslavradojevic/phd . Contact [email protected]. Supplementary information Supplementary data are available at Bioinformatics online.
منابع مشابه
Unscented Auxiliary Particle Filter Implementation of the Cardinalized Probability Hypothesis Density Filters
The probability hypothesis density (PHD) filter suffers from lack of precise estimation of the expected number of targets. The Cardinalized PHD (CPHD) recursion, as a generalization of the PHD recursion, remedies this flaw and simultaneously propagates the intensity function and the posterior cardinality distribution. While there are a few new approaches to enhance the Sequential Monte Carlo (S...
متن کاملProbability Hypothesis Density Filter Based on Gaussian-Hermite Numerical Integration
This work addresses the multi-target tracking problem in the nonlinear Gaussian system. One probability hypothesis density filtering algorithm based on GaussianHermite numerical integration is proposed. In order to calculate integrations in the Gaussian mixture probability hypothesis density filter, the Gaussian-Hermite numerical integration method is used to approximate the integration. In the...
متن کامل3D Multicolor Super-Resolution Imaging Offers Improved Accuracy in Neuron Tracing
The connectivity among neurons holds the key to understanding brain function. Mapping neural connectivity in brain circuits requires imaging techniques with high spatial resolution to facilitate neuron tracing and high molecular specificity to mark different cellular and molecular populations. Here, we tested a three-dimensional (3D), multicolor super-resolution imaging method, stochastic optic...
متن کاملA New Method for Characterization of Biological Particles in Microscopic Videos: Hypothesis Testing Based on a Combination of Stochastic Modeling and Graph Theory
Introduction Studying motility of biological objects is an important parameter in many biomedical processes. Therefore, automated analyzing methods via microscopic videos are becoming an important step in recent researches. Materials and Methods In the proposed method of this article, a hypothesis testing function is defined to separate biological particles from artifact and noise in captured v...
متن کاملDerivation of the PHD and CPHD Filters Based on Direct Kullback-Leibler Divergence Minimization
In this paper, we provide novel derivations of the probability hypothesis density (PHD) and cardinalised PHD (CPHD) filters without using probability generating functionals or functional derivatives. We show that both the PHD and CPHD filters fit in the context of assumed density filtering and implicitly perform Kullback-Leibler divergence (KLD) minimisations after the prediction and update ste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Bioinformatics
دوره 33 7 شماره
صفحات -
تاریخ انتشار 2017